4.4 Article

Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating

Journal

JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH
Volume 10, Issue 1, Pages 123-132

Publisher

SPRINGER
DOI: 10.1007/s11998-012-9429-3

Keywords

Fabrics/textiles; Electrical properties; Surface analysis

Ask authors/readers for more resources

In this study, carbon nanotubes (CNTs) were stabilized on a cotton surface using 1,2,3,4-butanetetracarboxylic acid (BTCA) as a crosslinking agent and sodium hypophosphite as a catalyst. The influence of CNTs on the performance of the cellulose fiber was investigated using a Raman spectrophotometer, thermogravimetric analyzer, a scanning electron microscope, electrical contacting equipment, and an electromagnetic field detector. The possible interactions between CNTs, a crosslinking agent, and cellulose functional groups at the surface were elucidated by Raman spectroscopy. The results indicate that the stabilized CNTs modify the surface of the fibers and increase the functionality and thermal stability of the substrate. SEM showed a uniform coating of CNTs on the fiber surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available