4.6 Article

Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 81, Issue 16, Pages 5449-5457

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01529-15

Keywords

-

Funding

  1. FEDER funds
  2. Fondo Social Europeo through grants from the Junta de Andalucia [P09-RNM-4509, CVI-7335]
  3. Spanish Ministry for Economy and Competitiveness [BIO2010-16937, BIO2013-42297]
  4. Spanish Ministry of Economy and Competitiveness Postdoctoral Research Program, Juan de la Cierva [BVA-2009-0200]

Ask authors/readers for more resources

Chemoreceptors are at the beginnings of chemosensory signaling cascades that mediate chemotaxis. Most bacterial chemoreceptors are functionally unannotated and are characterized by a diversity in the structure of their ligand binding domains (LBDs). The data available indicate that there are two major chemoreceptor families at the functional level, namely, those that respond to amino acids or to Krebs cycle intermediates. Since pseudomonads show chemotaxis to many different compounds and possess different types of chemoreceptors, they are model organisms to establish relationships between chemoreceptor structure and function. Here, we identify PP2861 (termed McpP) of Pseudomonas putida KT2440 as a chemoreceptor with a novel ligand profile. We show that the recombinant McpP LBD recognizes acetate, pyruvate, propionate, and L-lactate, with K-D (equilibrium dissociation constant) values ranging from 34 to 107 mu M. Deletion of the mcpP gene resulted in a dramatic reduction in chemotaxis toward these ligands, and complementation restored a native-like phenotype, indicating that McpP is the major chemoreceptor for these compounds. McpP has a CACHE-type LBD, and we present data indicating that CACHE-containing chemoreceptors of other species also mediate taxis to C-2 and C-3 carboxylic acids. In addition, the LBD of NbaY of Pseudomonas fluorescens, an McpP homologue mediating chemotaxis to 2-nitrobenzoate, bound neither nitrobenzoates nor the McpP ligands. This work provides further insight into receptor structure-function relationships and will be helpful to annotate chemoreceptors of other bacteria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available