4.6 Article

Rotational state detection of electrically trapped polyatomic molecules

Journal

NEW JOURNAL OF PHYSICS
Volume 17, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/17/5/055022

Keywords

cold molecules; state detection; rotational state; electric trapping; polyatomic molecules

Ask authors/readers for more resources

Detecting the internal state of polar molecules is a substantial challenge when standard techniques such as resonance-enhanced multiphoton ionization or laser-induced fluorescense do not work. As this is the case for most polyatomic molecule species, in this paper we investigate an alternative based on state-selective removal of molecules from an electrically trapped ensemble. Specifically, we deplete molecules by driving rotational and/or vibrational transitions to untrapped states. Fully resolving the rotational state with this method can be a considerable challenge, as the frequency differences between various transitions are easily substantially less than the Stark broadening in an electric trap. However, by using a unique trap design that provides homogeneous fields in a large fraction of the trap volume, we successfully discriminate all rotational quantum numbers, including the rotational M-substate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available