4.8 Article

Hepatocyte spheroid culture on fibrous scaffolds with grafted functional ligands as an in vitro model for predicting drug metabolism and hepatotoxicity

Journal

ACTA BIOMATERIALIA
Volume 28, Issue -, Pages 138-148

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2015.09.027

Keywords

Hepatocyte spheroid; Fibrous scaffold; Functional ligand; Drug metabolism; Drug hepatotoxicity; Drug-drug interaction

Funding

  1. National Natural Science Foundation of China [21274117, 31470922]
  2. Scientific and Technical Supporting Programs of Sichuan Province [2013SZ0084]
  3. Construction Program for Innovative Research Team of University in Sichuan Province [14TD0050]

Ask authors/readers for more resources

The identification of a biologic substrate for maintaining hepatocyte functions is essential to provide reliable and predictable models for in vitro drug screening. In the current study, a three-dimensional culture of hepatocytes was established on highly porous fibrous scaffolds with grafted galactose and RGD to afford extensive cell-cell and cell-scaffold interactions spatially. The pore size and ligand densities indicated significant effects on the formation of hepatocyte spheroids in balancing the cell retention, adhesion, and migration on fibrous scaffolds. Fibrous scaffolds with an average pore size of 60 mu m and surface grafting densities of galactose at 5.9 nmol/cm(2) and RGD at 6.9 pmol/cm(2) provided optimal microenvironments for hepatocyte infiltration and multicellular spheroid formation. Significant promotions were also demonstrated in the syntheses of albumin and urea and the activities of phase I (CYP 3A11 and CYP 2C9) and phase II enzymes. The in vitro metabolism tests on testosterone and acetaminophen by hepatocytes on the optimal scaffolds indicated the predicated clearance rates of 50.7 and 22.6 ml/min/kg, respectively, which were comparable to the in vivo values of rats. The in vitro hepatotoxicity tests on amiodarone hydrochloride and acetaminophen predicted the half maximal effective concentrations (EC50) to reflect the in vivo toxic plasma concentrations in human. In addition, the enzyme activities, predicted clearance rates and hepatotoxicity values of hepatocytes on the optimal scaffolds experienced sensitive responsiveness to specific inducers or inhibitors of CYP 3A11 and phase II enzymes, exhibiting in vivo-in vitro correlations to a certain extent. These results demonstrate the feasibility of hepatocyte spheroid culture on fibrous scaffolds as an potential in vitro testing model to predict the in vivo drug metabolism, hepatotoxicity, and drug-drug interactions. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available