4.8 Article

Genetically Determined Height and Coronary Artery Disease

Journal

NEW ENGLAND JOURNAL OF MEDICINE
Volume 372, Issue 17, Pages 1608-1618

Publisher

MASSACHUSETTS MEDICAL SOC
DOI: 10.1056/NEJMoa1404881

Keywords

-

Funding

  1. British Heart Foundation
  2. British Heart Foundation [RG/08/014/24067, FS/14/55/30806] Funding Source: researchfish
  3. Medical Research Council [MC_U106179471, MC_CF023241, G0601463, MC_UU_12015/1, MR/L003120/1, MR/L01629X/1] Funding Source: researchfish
  4. National Institute for Health Research [NF-SI-0512-10135, NF-SI-0508-10235, NF-SI-0512-10165, NF-SI-0611-10170] Funding Source: researchfish
  5. MRC [MR/L01629X/1, G0601463, MC_UU_12015/1, MR/L003120/1] Funding Source: UKRI

Ask authors/readers for more resources

BACKGROUND The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. METHODS We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. RESULTS We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quar-tile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. CONCLUSIONS There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available