4.3 Article

A longitudinal study of sensory biomarkers of progression in patients with diabetic peripheral neuropathy using skin biopsies

Journal

JOURNAL OF CLINICAL NEUROSCIENCE
Volume 19, Issue 11, Pages 1490-1496

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jocn.2011.12.026

Keywords

Biomarker; Diabetes; IENF; Neuropathy; Skin biopsy

Funding

  1. Johnson & Johnson Pharmaceutical Research & Development (J&JPRD), a division of Janssen Pharmaceutica NV, Turnhoutseweg, Beerse, Belgium

Ask authors/readers for more resources

We aimed to identify biomarkers in skin punch biopsies that could be used to monitor progression of diabetic peripheral neuropathy (DPN), and, in future studies, to assess the efficacy of agents that may reduce progression. Patients with DPN were studied with clinical assessments, skin biopsies, quantitative sensory testing (QST), histamine-induced skin flare, nerve conduction studies and contact heat-evoked potentials (CHEPS). Skin biopsies were performed on two visits with a 6 month interval (n = 29 patients) to quantify intraepidermal (IENF) and subepidermal (SENF) nerve fibres immunoreactive for: protein gene product 9.5 (PGP9.5), a pan-neuronal marker; transient receptor potential cation channel vanilloid 1 (TRPV1), the heat and capsaicin receptor; and growth associated protein-43 (GAP-43), a marker of regenerating fibres. The IENF were counted along the length of four non-consecutive sections, and results were expressed as fibres per millimetre length of section. SENF were measured by image analysis, and the area of highlighted immunoreactivity was obtained as a percentage (% area) of the field scanned. QST, skin flare and CHEPS were also performed at the two visits. We found that IENF and SENF were significantly reduced for both PGP9.5 and TRPV1 between the first and second skin biopsy over 6 months. The annual rate standard error of the mean of IENF loss was 3.76 +/- 1.46 fibres/mm for PGP9.5, and 3.13 +/- 0.58 fibres/mm for TRPV1. The other tests did not show significant changes. Strongly positive GAP-43 nerve fibres were found in deep dermis in the patients with diabetes, even in those with an absence of IENF. We conclude that PGP9.5 and TRPV1 IENF and SENF in skin biopsies are useful markers of progression in DPN, whereas GAP-43 SENF could potentially help detect nerve regeneration in severe neuropathy. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available