4.7 Article

Novel Real-Time Simultaneous Amplification and Testing Method To Accurately and Rapidly Detect Mycobacterium tuberculosis Complex

Journal

JOURNAL OF CLINICAL MICROBIOLOGY
Volume 50, Issue 3, Pages 646-650

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JCM.05853-11

Keywords

-

Categories

Funding

  1. Science and Technology Commission of Shanghai Municipality [10411955100]
  2. Shanghai Rising-Star Program [10QA1405800]

Ask authors/readers for more resources

The aim of this study was to establish and evaluate a simultaneous amplification and testing method for detection of the Mycobacterium tuberculosis complex (SAT-TB assay) in clinical specimens by using isothermal RNA amplification and real-time fluorescence detection. In the SAT-TB assay, a 170-bp M. tuberculosis 16S rRNA fragment is reverse transcribed to DNA by use of Moloney murine leukemia virus (M-MLV) reverse transcriptase, using specific primers incorporating the T7 promoter sequence, and undergoes successive cycles of amplification using T7 RNA polymerase. Using a real-time PCR instrument, hybridization of an internal 6-carboxyfluorescein-4-[4-(dimethylamino)phenylazo] benzoic acid N-succinimidyl ester (FAM-DABCYL)-labeled fluorescent probe can be used to detect RNA amplification. The SAT-TB assay takes less than 1.5 h to perform, and the sensitivity of the assay for detection of M. tuberculosis H37Rv is 100 CFU/ml. The TB probe has no cross-reactivity with nontuberculous mycobacteria or other common respiratory tract pathogens. For 253 pulmonary tuberculosis (PTB) specimens and 134 non-TB specimens, the SAT-TB results correlated with 95.6% (370/387 specimens) of the Bactec MGIT 960 culture assay results. The sensitivity, specificity, and positive and negative predictive values of the SAT-TB test for the diagnosis of PTB were 67.6%, 100%, 100%, and 62.0%, respectively, compared to 61.7%, 100%, 100%, and 58.0% for Bactec MGIT 960 culture. For PTB diagnosis, the sensitivities of the SAT-TB and Bactec MGIT 960 culture methods were 97.6% and 95.9%, respectively, for smear-positive specimens and 39.2% and 30.2%, respectively, for smear-negative specimens. In conclusion, the SAT-TB assay is a novel, simple test with a high specificity which may enhance the detection rate of TB. It is therefore a promising tool for rapid diagnosis of M. tuberculosis infection in clinical microbiology laboratories.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available