4.7 Article

Sensitive detection of multiple rotavirus genotypes with a single reverse transcription-real-time quantitative PCR assay

Journal

JOURNAL OF CLINICAL MICROBIOLOGY
Volume 46, Issue 8, Pages 2547-2554

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JCM.02428-07

Keywords

-

Categories

Funding

  1. Slovenian Research Agency
  2. Slovenian Ministry of Defense [M1-0145]

Ask authors/readers for more resources

Rotaviruses are one of the major causes of diarrhea in infants and children under 5 years old, especially affecting developing countries. In natural disasters, fecal matter and potable waters can mix, allowing low, yet infective, concentrations of rotavirus to be present in water supplies, constituting a risk for the population. Any of the most commonly detected rotavirus genotypes could originate an outbreak. The development of a fast and sensitive method that could detect the broadest possible range of rotavirus genotypes would help with efficient diagnosis and prevention. We have designed a reverse transcription (RT)-real-time quantitative PCR approach targeted to the rotaviral VP2 gene, based on a multiple-sequence alignment of different human rotaviral strains. To overcome the high nucleotide sequence diversity, multiple forward and reverse primers were used, in addition to a degenerate probe. The performance of the assay was tested on isolates representing the most prevalent human genotypes: G1P[ 8], G2P[ 4], G3P[ 8], G4P[ 8], G9P[ 8], and G12P[ 8]. The developed method improved classical rotavirus detection by enzyme-linked immunosorbent assay and nested RT-PCR by 5 and at least 1 order of magnitude, respectively. A survey of 159 stool samples indicated that the method can efficiently detect a broad range of rotavirus strains, including different G-P genotype combinations of human, porcine, and bovine origin. No cross-reactivity was observed with other enteric viruses, such as astrovirus, sapovirus, and norovirus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available