4.7 Article

Molecular Epidemiology and Phylogenetic Distribution of the Escherichia coli pks Genomic Island

Journal

JOURNAL OF CLINICAL MICROBIOLOGY
Volume 46, Issue 12, Pages 3906-3911

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JCM.00949-08

Keywords

-

Categories

Funding

  1. Office of Research and Development, Medical Research Service
  2. Department of Veterans Affairs
  3. National Institutes of Health

Ask authors/readers for more resources

Epidemiological and phylogenetic associations of the pks genomic island of extraintestinal pathogenic Escherichia coli (ExPEC), which encodes the genotoxin colibactin, are incompletely defined. clbB and clbN (as markers for the 5' and 3' regions of the pks island, respectively), clbA and clbQ (as supplemental pks island markers), and 12 other putative ExPEC virulence genes were newly sought by PCR among 131 published E. coli isolates from hospitalized veterans (62 blood isolates and 69 fecal isolates). Blood and fecal isolates and clbB-positive and -negative isolates were compared for 66 newly and previously assessed traits. Among the 14 newly sought traits, clbB and clbN (colibactin polyketide synthesis system), hra (heat-resistant agglutinin), and vat (vacuolating toxin) were significantly associated with bacteremia. clbB and clbN identified a subset within phylogenetic group B2 with extremely high virulence scores and a high proportion of blood isolates. However, by multivariable analysis, other traits were more predictive of blood source than clbB and clbN were; indeed, among the newly sought traits, only pic significantly predicted bacteremia (negative association). By correspondence analysis, clbB and clbN were closely associated with group B2 and multiple B2-associated traits; by principal coordinate analysis, clbB and clbN partitioned the data set better than did blood versus fecal source. Thus, the pks island was significantly associated with bacteremia, multiple ExPEC-associated virulence genes, and group B2, and within group B2, it identified an especially high-virulence subset. This extends previous work regarding the pks island and supports investigation of the colibactin system as a potential therapeutic target.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available