4.8 Article

Desmoglein-1/Erbin interaction suppresses ERK activation to support epidermal differentiation

Journal

JOURNAL OF CLINICAL INVESTIGATION
Volume 123, Issue 4, Pages 1556-1570

Publisher

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI65220

Keywords

-

Funding

  1. NIH/NCI [P30 CA060553-159026]
  2. Pathology Core of the Northwestern University Skin Disease Research Center, Chicago, Illinois, USA [P30AR057216]
  3. NIH/NIAMS
  4. NIH [R01 AR041836, AR43380, CA122151, T32 GM08061]
  5. NIH-NIEHS [F30 ES14990]
  6. R.H. Lurie Cancer Center
  7. Northwestern University
  8. NIH-NCI [T32 CA070085-14]
  9. Dermatology Foundation Career Development Award
  10. American Heart Association [11POST7380001]
  11. American Heart Association

Ask authors/readers for more resources

Genetic disorders of the Ras/MAPK pathway, termed RASopathies, produce numerous abnormalities, including cutaneous keratodermas. The desmosomal cadherin, desmoglein-1 (DSG1), promotes keratinocyte differentiation by attenuating MAPK/ERK signaling and is linked to striate palm plantar keratoderma (SPPK). This raises the possibility that cutaneous defects associated with SPPK and RASopathies share certain molecular faults. To identify intermediates responsible for executing the inhibition of ERK by DSG1, we conducted a yeast 2-hybrid screen. The screen revealed that Erbin (also known as ERBB2IP), a known ERK regulator, binds DSG1. Erbin silencing disrupted keratinocyte differentiation in culture, mimicking aspects of DSG1 deficiency. Furthermore, ERK inhibition and the induction of differentiation markers by DSG1 required both Erbin and DSG1 domains that participate in binding Erbin. Erbin blocks ERK signaling by interacting with and disrupting Ras-Raf scaffolds mediated by SHOC2, a protein genetically linked to the RASopathy, Noonan-like syndrome with loose anagen hair (NS/LAH). DSG1 overexpression enhanced this inhibitory function, increasing Erbin-SHOC2 interactions and decreasing Ras-SHOC2 interactions. Conversely, analysis of epidermis from DSG1-deficient patients with SPPK demonstrated increased Ras-SHOC2 colocalization and decreased Erbin-SHOC2 colocalization, offering a possible explanation for the observed epidermal defects. These findings suggest a mechanism by which DSG1 and Erbin cooperate to repress MAPK signaling and promote keratinocyte differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available