4.8 Article

MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice

Journal

JOURNAL OF CLINICAL INVESTIGATION
Volume 119, Issue 9, Pages 2772-2786

Publisher

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI36154

Keywords

-

Funding

  1. March of Dimes Birth Defect Foundation
  2. NIH
  3. American Heart Association, and Muscular Dystrophy Association
  4. Chinese National Natural Science Foundation [30772211]

Ask authors/readers for more resources

MicroRNAs (miRNAs) are a class of small noncoding RNAs that have gained status as important regulators of gene expression. Here, we investigated the function and molecular mechanisms of the miR-208 family of miRNAs in adult mouse heart physiology. We found that miR-208a, which is encoded within an intron of cc-cardiac muscle myosin heavy chain gene (Myb6), was actually a member of a miRNA family that also included miR-208b, which was determined to be encoded within an intron of beta-cardiac muscle myosin heavy chain gene (Myb7). These miRNAs were differentially expressed in the mouse heart, paralleling the expression of their host genes. Transgenic overexpression of miR-208a in the heart was sufficient to induce hypertrophic growth in mice, which resulted in pronounced repression of the miR-208 regulatory targets thyroid hormone-associated protein 1 and myostatin, 2 negative regulators of muscle growth and hypertrophy. Studies of the miR-208a Tg mice indicated that miR-208a expression was sufficient to induce arrhythmias. Furthermore, analysis of mice lacking miR-208a indicated that miR-208a was required for proper cardiac conduction and expression of the cardiac transcription factors homeodomain-only protein and GATA4 and the gap junction protein connexin 40. Together, our studies uncover what we believe are novel miRNA-dependent mechanisms that modulate cardiac hypertrophy and electrical conduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available