4.8 Article

Expression of an activating mutation in the gene encoding the K-ATP channel subunit Kir6.2 in mouse pancreatic beta cells recapitulates neonatal diabetes

Journal

JOURNAL OF CLINICAL INVESTIGATION
Volume 119, Issue 1, Pages 80-90

Publisher

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI35772

Keywords

-

Funding

  1. Wellcome Trust
  2. Medical Research Council
  3. European Union (EuroDia) and (BioSim) [LSHM-CT-2006-518153, LSHB-CT-2004-05137]
  4. Royal Society
  5. Deutsche Forschungsgemeinschaft [DGF-BR1492-7]
  6. Conselho Nacional de Desenvolvimento Cientifico a Tecnologico, Brazil
  7. Medical Research Council [MC_U142661184, MC_UP_1502/1] Funding Source: researchfish
  8. MRC [MC_UP_1502/1, MC_U142661184] Funding Source: UKRI

Ask authors/readers for more resources

Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K+ (K-ATP) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of K-ATP channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of K-ATP channels, closed K-ATP channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of K-ATP channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available