4.7 Article

Physiology of Activins/Follistatins: Associations With Metabolic and Anthropometric Variables and Response to Exercise

Journal

JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM
Volume 103, Issue 10, Pages 3890-3899

Publisher

ENDOCRINE SOC
DOI: 10.1210/jc.2018-01056

Keywords

-

Funding

  1. National Institutes of Health [K24DK081913]
  2. Deutsche Forschungsgemeinschaft (German Research Foundation) [389891681 (PE 2431/2-1)]
  3. Greek State Scholarship Foundation (IKY Fellowships of Excellence for Postgraduate Studies in Greece - SIEMENS Program)

Ask authors/readers for more resources

Context: Clinical trials are evaluating the efficacy of inhibitors of the myostatin pathway in neuromuscular and metabolic diseases. Activins and follistatins are major regulators of the myostatin pathway, but their physiology in relation to metabolic and anthropometric variables and in response to exercise remains to be fully elucidated in humans. Objective: We investigated whether concentrations of circulating activin A, activin B, follistatin, and follistatin-like 3 (FSTL3) are associated with anthropometric and metabolic variables and whether they are affected by exercise. Design: Activin A, activin B, follistatin, and FSTL3 were measured in (1) 80 subjects divided according to age (young vs old) and fitness status (active vs sedentary) before and after exercise at 70% maximal oxygen consumption (VO(2)max), followed by 90% of VO(2)max until exhaustion; and (2) 23 subjects [9 healthy and 14 with metabolic syndrome (MetS)] who completed four sessions: no exercise, high-intensity interval exercise, continuous moderate-intensity exercise, and resistance exercise for up to 45 minutes. Results: At baseline, follistatin and FSTL3 concentrations were positively associated with age, fat percentage, and body mass index (P < 0.001). Follistatin was positively associated with serum cholesterol (P = 0.005), low-density lipoprotein cholesterol (P = 0.01), triglycerides (P = 0.033), and blood pressure (P = 0.019), whereas activin A and activin B were higher in physically active participants (P = 0.056 and 0.029, respectively). All exercise types increased the levels of all hormones; 10% to 21% (P = 0.034 for activin B, P < 0.001 for the others) independent of the presence of MetS. Conclusion: Concentrations of circulating activins and follistatins are associated with metabolic parameters and increase after 45 minutes of exercise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available