4.7 Article

Fasting, But Not Exercise, Increases Adipose Triglyceride Lipase (ATGL) Protein and Reduces G(0)/G(1) Switch Gene 2 (G0S2) Protein and mRNA Content in Human Adipose Tissue

Journal

JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM
Volume 96, Issue 8, Pages E1293-E1297

Publisher

ENDOCRINE SOC
DOI: 10.1210/jc.2011-0149

Keywords

-

Funding

  1. The FOOD Study Group/Ministry of Food, Agriculture and Fisheries&Ministry of Family and Consumer Affairs, Denmark
  2. The Lundbeck Foundation, Denmark
  3. The Novo Nordisk Foundation, Denmark
  4. Augustinus Fonden, Denmark
  5. Aase og Ejnar Danielsens Fond, Denmark

Ask authors/readers for more resources

Context: Fasting and exercise are characterized by increased lipolysis, but the underlying mechanisms are not fully understood. Objective: The study was designed to test whether fasting and exercise affect mRNA and protein levels of adipose triglyceride lipase (ATGL) and G(0)/G(1) switch gene 2 (G0S2), a recently discovered ATGL inhibitor, in humans. Design and Participants: We studied eight healthy men (age, 25.5 +/- 4.3 yr) for 6 h (a 4-h basal and a 2-h clamp period) on three occasions in a randomized crossover design: 1) in the basal state and after; 2) 72-h fasting; and 3) 1-h exercise (65% VO2max). Subcutaneous abdominal adipose tissue (AT) biopsies were taken at t = 30 and 270 min. Setting: The study was conducted at a university hospital research unit. Results: Circulating free fatty acids and GH were increased, and C-peptide was decreased by both fasting and exercise. During fasting, insulin failed to suppress free fatty acid levels, suggesting AT insulin resistance. ATGL protein was increased 44% (P < 0.001), and G0S2 mRNA and protein were decreased 56% (P = 0.02) and 54% (P = 0.01), respectively, after fasting, but both ATGL and G0S2 were unaffected by exercise. Protein levels of hormone-sensitive lipase and comparative gene identification-58 were unaffected throughout. Conclusions: We found increased AT content of ATGL and decreased protein and mRNA content of the ATGL inhibitor G0S2, suggesting increased ATGL activity during fasting, but not after short-term exercise. These findings are compatible with the notion that the ATGL-G0S2 complex is an important long-term regulator of lipolysis under physiological conditions such as fasting in humans. (J Clin Endocrinol Metab 96: E1293-E1297, 2011)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available