4.7 Article

Extracellularly signal-regulated kinase activity in the human endometrium: Possible roles in the pathogenesis of endometriosis

Journal

JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM
Volume 93, Issue 9, Pages 3532-3540

Publisher

ENDOCRINE SOC
DOI: 10.1210/jc.2007-2051

Keywords

-

Funding

  1. Turkish Scientific and Technical Research Council (TUBITAK)

Ask authors/readers for more resources

Context: Endometriosis is an estrogen-dependent disease characterized by the presence of endometrial tissue outside of the uterine cavity, causing pelvic pain and infertility in 10% of reproductive-aged women. It is unclear why ectopic endometrium remains viable in only a subset of women. ERK1/2 plays key intracellular roles in activating cellular survival and differentiation processes. Objective: We sought to determine ERK1/2 activity in patients with endometriosis and its possible roles in regulating endometrial cell survival. Design: ERK1/2 phosphorylation and expression throughout the menstrual cycle were evaluated in vivo in normal and endometriotic human endometrium, and in vitro techniques assessed the steroidal regulation of ERK1/2 and its effect on endometrial cell survival. Results: Total ERK1/2 remained constant in normal and endometriotic endometrium throughout the menstrual cycle. Phospho-ERK1/2 was high in the late proliferative and secretory phases in normal endometrium (P < 0.05). In endometriotic glandular cells, there was no cyclical variation in phospho-ERK1/2. In endometriotic stromal cells, there was also a reduction in phospho-ERK1/2 variation, with higher levels in the early-mid secretory phase (P < 0.05). In cultured endometrial stromal cells (ESCs), estrogen plus progesterone increased ERK1/2 phosphorylation within 15 min (P < 0.05). Although estrogen alone did not induce ERK1/2 phosphorylation in normal ESCs, there was a significant response to estrogen in ESCs isolated from eutopic endometriotic endometrium (P < 0.05). ERK1/2 inhibition in ESCs reduced proliferation and increased apoptosis (P < 0.05). Conclusion: Abnormally high levels of ERK1/2 activity may be involved in endometriosis, possibly by stimulating endometrial cell survival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available