4.7 Article

1H magnetic resonance spectroscopy in monocarboxylate transporter 8 gene deficiency

Journal

JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM
Volume 93, Issue 5, Pages 1854-1859

Publisher

ENDOCRINE SOC
DOI: 10.1210/jc.2007-2441

Keywords

-

Ask authors/readers for more resources

Context: In monocarboxylate transporter 8 (MCT8) gene deficiency, a syndrome combining thyroid and neurological abnormalities, the central nervous system has not yet been characterized by magnetic resonance (MR) spectroscopy. Objective: We studied whether the degree of dysmyelinization in MCT8 gene deficiency according to MR imaging (MRI) is coupled with abnormalities in brain metabolism. Design: MRI and MR spectroscopy of the brain were performed twice in two MCT8 gene deficiency patients, for the first time at age 8-10 months and for the second time at age 17-28 months. The results were compared with those obtained in controls of a similar age. Results: Compared with controls, young children with MCT8 show choline and myoinositol level increases and N-acetyl aspartate decreases in supraventricular gray and white matter, phenomena associated with the degree of dysmyelinization according to MRI. Conclusion: MCT8 gene deficiency results in deviant myelinization and general atrophy, which is substantiated by the MR spectroscopy findings of increased choline and myoinositol levels and decreased N-acetyl aspartate. The observations suggest that different mutations in the MCT8 gene lead to differences in the severity of the clinical spectrum, dysmyelinization, and MR spectroscopy-detectable changes in brain metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available