4.1 Review

Sources of Extracellular, Oxidatively-Modified DNA Lesions: Implications for Their Measurement in Urine

Journal

JOURNAL OF CLINICAL BIOCHEMISTRY AND NUTRITION
Volume 45, Issue 3, Pages 255-270

Publisher

JOURNAL CLINICAL BIOCHEMISTRY & NUTRITION
DOI: 10.3164/jcbn.SR09-41

Keywords

DNA damage; urine; oxidative stress; DNA repair; cell death

Funding

  1. European Union [513943]
  2. National Institutes of Health [RR13461, CA93373]
  3. California Breast Cancer Research Program [9KB-0179]
  4. Knapp Family Fund

Ask authors/readers for more resources

There is a robust mechanistic basis for the role of oxidation damage to DNA in the aetiology of various major diseases (cardiovascular, neurodegenerative, cancer). Robust, validated biomarkers are needed to measure oxidative damage in the context of molecular epidemiology, to clarify risks associated with oxidative stress, to improve our understanding of its role in health and disease and to test intervention strategies to ameliorate it. Of the urinary biomarkers for DNA oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) is the. most studied. However, there are a number of factors which hamper our complete understanding of what meausrement of this lesion in urine actually represents. DNA repair is thought to be a major contributor to urinary 8-oxodG levels, although the precise pathway(s) has not been proven, plus possible contribution from cell turnover and diet are possible confounders. Most recently, evidence has arisen which suggests that nucleotide salvage of 8-oxodG and 8-oxoGua can contribute substantially to 8-oxoG levels in DNA and RNA, at least in rapidly dividing cells. This new observation may add an further confounder to the conclusion that 8-oxoGua or 8-oxodG and its nucleobase equivalent 8-oxoguanine, concentrations in urine are simply a consequence of DNA repair. Further studies are required to define the relative contributions of metabolism, disease and diet to oxidised nucleic acids and their metabolites in urine in order to develop urinalyis as a better tool for understanding human disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available