4.7 Article

The Global Historical Climatology Network Monthly Temperature Dataset, Version 4

Journal

JOURNAL OF CLIMATE
Volume 31, Issue 24, Pages 9835-9854

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-18-0094.1

Keywords

Land surface; Climatology; Surface temperature; Climate records; Time series

Ask authors/readers for more resources

We describe a fourth version of the Global Historical Climatology Network (GHCN)-monthly (GHCNm) temperature dataset. Version 4 (v4) fulfills the goal of aligning GHCNm temperature values with the GHCN-daily dataset and makes use of data from previous versions of GHCNm as well as data collated under the auspices of the International Surface Temperature Initiative. GHCNm v4 has many thousands of additional stations compared to version 3 (v3) both historically and with short time-delay updates. The greater number of stations as well as the use of records with incomplete data during the base period provides for greater global coverage throughout the record compared to earlier versions. Like v3, the monthly averages are screened for random errors and homogenized to address systematic errors. New to v4, uncertainties are calculated for each station series, and regional uncertainties scale directly from the station uncertainties. Correlated errors in the station series are quantified by running the homogenization algorithm as an ensemble. Additional uncertainties associated with incomplete homogenization and use of anomalies are then incorporated into the station ensemble. Further uncertainties are quantified at the regional level, the most important of which is for incomplete spatial coverage. Overall, homogenization has a smaller impact on the v4 global trend compared to v3, though adjustments lead to much greater consistency than between the unadjusted versions. The adjusted v3 global mean therefore falls within the range of uncertainty for v4 adjusted data. Likewise, annual anomaly uncertainties for the other major independent land surface air temperature datasets overlap with GHCNm v4 uncertainties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available