4.7 Article

The Dependence of ITCZ Structure on Model Resolution and Dynamical Core in Aquaplanet Simulations

Journal

JOURNAL OF CLIMATE
Volume 27, Issue 6, Pages 2375-2385

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-13-00269.1

Keywords

Waves, atmospheric; Climate models; Feedback; Intertropical convergence zone

Funding

  1. Department of Energy Regional and Global Climate Modeling (RGCM) Program through the project Development of frameworks for robust regional modeling''
  2. U.S. Department of Energy [DE-AC05-76RLO1830]

Ask authors/readers for more resources

Aquaplanet simulations using the Community Atmosphere Model, version 4 (CAM4), with the Model for Prediction Across Scales-Atmosphere (MPAS-A) and High-Order Method Modeling Environment (HOMME) dynamical cores and using zonally symmetric sea surface temperature (SST) structure are studied to understand the dependence of the intertropical convergence zone (ITCZ) structure on resolution and dynamical core. While all resolutions in HOMME and the low-resolution MPAS-A simulations give a single equatorial peak in zonal mean precipitation, the high-resolution MPAS-A simulations give a double ITCZ with precipitation peaking around 2 degrees-3 degrees on either side of the equator. This study reveals that the structure of ITCZ is dependent on the feedbacks between convection and large-scale circulation. It is shown that the difference in specific humidity between HOMME and MPAS-A can lead to different latitudinal distributions of the convective available potential energy (CAPE) by influencing latent heat release by clouds and the upper-tropospheric temperature. With lower specific humidity, the high-resolution MPAS-A simulation has CAPE increasing away from the equator that enhances convection away from the equator and, through a positive feedback on the circulation, results in a double ITCZ structure. In addition, it is shown that the dominance of antisymmetric waves in the model is not enough to cause double ITCZ, and the lateral extent of equatorial waves does not play an important role in determining the width of the ITCZ but rather the latter may influence the former.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available