4.7 Article

Impact of Spring Soil Moisture on Surface Energy Balance and Summer Monsoon Circulation over East Asia and Precipitation in East China

Journal

JOURNAL OF CLIMATE
Volume 24, Issue 13, Pages 3309-3322

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2011JCLI4084.1

Keywords

-

Funding

  1. National Basic Research Program of China [2007CB411505]
  2. National Key Program [2007BAC29B02]
  3. National Natural Science foundation of China (NSFC) [40921003]
  4. National Key Program of China for Developing Basic Sciences [2004CB418300]

Ask authors/readers for more resources

Numerous studies have been conducted on the impact of soil moisture on the climate, but few studies have attempted to diagnose the linkage between soil moisture and climate variability using observational data. Here, using both observed and reanalysis data, the spring (April-May) soil moisture is found to have a significant impact on the summer (June-August) monsoon circulation over East Asia and precipitation in east China by changing surface thermal conditions. In particular, the spring soil moisture over a vast region from the lower and middle reaches of the Yangtze River valley to north China (the YRNC region) is significantly correlated to the summer precipitation in east China. When the YRNC region has a wetter soil in spring, northeast China and the lower and middle reaches of the Yangtze River valley would have abnormally higher precipitation in summer, while the region south of the Yangtze River valley would have abnormally lower precipitation. An analysis of the physical processes linking the spring soil moisture to the summer precipitation indicates that the soil moisture anomaly across the YRNC region has a major impact on the surface energy balance. Abnormally wet soil would increase surface evaporation and hence decrease surface air temperature (T-a). The reduced T-a in late spring would narrow the land-sea temperature difference, resulting in the weakened East Asian monsoon in an abnormally strengthened western Pacific subtropical high that is also located farther south than its normal position. This would then enhance precipitation in the Yangtze River valley. Conversely, the abnormally weakened East Asian summer monsoon allows the western Pacific subtropical high to wander to south of the Yangtze River Valley, resulting in an abnormally reduced precipitation in the southern part of the country in east China.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available