4.7 Article

A Multimodel Study of Parametric Uncertainty in Predictions of Climate Response to Rising Greenhouse Gas Concentrations

Journal

JOURNAL OF CLIMATE
Volume 24, Issue 5, Pages 1362-1377

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2010JCLI3498.1

Keywords

-

Funding

  1. Office of Science, U.S. Department of Energy

Ask authors/readers for more resources

One tool for studying uncertainties in simulations of future climate is to consider ensembles of general circulation models where parameterizations have been sampled within their physical range of plausibility. This study is about simulations from two such ensembles: a subset of the climateprediction.net ensemble using the Met Office Hadley Centre Atmosphere Model, version 3.0 and the new CAMcube ensemble using the Community Atmosphere Model, version 3.5. The study determines that the distribution of climate sensitivity in the two ensembles is very different: the climateprediction.net ensemble subset range is 1.7-9.9 K, while the CAMcube ensemble range is 2.2-3.2 K. On a regional level, however, both ensembles show a similarly diverse range in their mean climatology. Model radiative flux changes suggest that the major difference between the ranges of climate sensitivity in the two ensembles lies in their clear-sky longwave responses. Large clear-sky feedbacks present only in the climateprediction.net ensemble are found to be proportional to significant biases in upper-tropospheric water vapor concentrations, which are not observed in the CAMcube ensemble. Both ensembles have a similar range of shortwave cloud feedback, making it unlikely that they are causing the larger climate sensitivities in climateprediction.net. In both cases, increased negative shortwave cloud feedbacks at high latitudes are generally compensated by increased positive feedbacks at lower latitudes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available