4.7 Article

Surface Flux Observations on the Southeastern Tropical Pacific Ocean and Attribution of SST Errors in Coupled Ocean-Atmosphere Models

Journal

JOURNAL OF CLIMATE
Volume 23, Issue 15, Pages 4152-4174

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2010JCLI3411.1

Keywords

-

Funding

  1. U.S. National Oceanic and Atmospheric Administration (NOAA)

Ask authors/readers for more resources

A new dataset synthesizes in situ and remote sensing observations from research ships deployed to the southeastern tropical Pacific stratocumulus region for 7 years in boreal fall. Surface meteorology, turbulent and radiative fluxes, aerosols, cloud properties, and rawinsonde profiles were measured on nine ship transects along 20 degrees S from 75 degrees to 85 degrees W. Fluxes at the ocean surface are essential to the equilibrium SST. Solar radiation is the only warming net heat flux, with 180-200 W m(-2) in boreal fall. The strongest cooling is evaporation (60-100 W m(-2)), followed by net thermal infrared radiation (30 W m(-2)) and sensible heat flux (<10 W m(-2)). The 70 W m(-2) imbalance of heating at the surface reflects the seasonal SST tendency and some 30 W m(-2) cooling that is mostly due to ocean transport. Coupled models simulate significant SST errors in the eastern tropical Pacific Ocean. Three different observation-based gridded ocean surface flux products agree with ship and buoy observations, while fluxes simulated by 15 Coupled Model Intercomparison Project phase 3 [CMIP3; used for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report] general circulation models have relatively large errors. This suggests the gridded observation-based flux datasets are sufficiently accurate for verifying coupled models. Longwave cooling and solar warming are correlated among model simulations, consistent with cloud radiative forcing and low cloud amount differences. In those simulations with excessive solar heating, elevated SST also results in larger evaporation and longwave cooling to compensate for the solar excess. Excessive turbulent heat fluxes (10-90 W m(-2) cooling, mostly evaporation) are the largest errors in simulations once the compensation between solar and longwave radiation is taken into account. In addition to excessive solar warming and evaporation, models simulate too little oceanic residual cooling in the southeastern tropical Pacific Ocean.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available