4.7 Article

Contributions of Indian Ocean Sea Surface Temperatures to Enhanced East African Rainfall

Journal

JOURNAL OF CLIMATE
Volume 22, Issue 4, Pages 993-1013

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2008JCLI2493.1

Keywords

-

Ask authors/readers for more resources

Links between extreme wet conditions over East Africa and Indian Ocean sea surface temperatures (SST) are investigated during the core of the so-called short rain season in October-November. During periods of enhanced East African rainfall, Indian Ocean SST anomalies reminiscent of a tropical Indian Ocean dipole (IOD) event are observed. Ensemble simulations with an atmospheric general circulation model are used to understand the relative effect of local and large-scale Indian Ocean SST anomalies on above-average East African precipitation. The importance of the various tropical and subtropical IOD SST poles, both individually and in combination, is quantified. In the simulations, enhanced East African short rains'' are predominantly driven by the local warm SST anomalies in the western equatorial Indian Ocean, while the eastern cold pole of the tropical IOD is of lesser importance. The changed East African rainfall distribution can be explained by a reorganization of the atmospheric circulation induced by the SST anomalies. A reduction in sea level pressure over the western half of the Indian Ocean and converging wind anomalies over East Africa lead to moisture convergence and increased convective activity over the region. The pattern of large-scale circulation changes over the tropical Indian Ocean and adjacent landmasses is consistent with an anomalous strengthening of the Walker cell. The seasonal cycle of various indices related to the SST and the atmospheric circulation in the equatorial Indian Ocean are examined to assess their potential usefulness for seasonal forecasting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available