4.7 Article

Indian Ocean Capacitor Effect on Indo-Western Pacific Climate during the Summer following El Nino

Journal

JOURNAL OF CLIMATE
Volume 22, Issue 3, Pages 730-747

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2008JCLI2544.1

Keywords

-

Funding

  1. U. S. National Science Foundation
  2. Japan Agency for Marine-Earth Science and Technology
  3. Natural Science Foundation of China (NSFC)
  4. Chinese Academy of Sciences (CAS) [541/7584]

Ask authors/readers for more resources

Significant climate anomalies persist through the summer (June-August) after El Nino dissipates in spring over the equatorial Pacific. They include the tropical Indian Ocean (TIO) sea surface temperature (SST) warming, increased tropical tropospheric temperature, an anomalous anticyclone over the subtropical northwest Pacific, and increased mei-yu-baiu rainfall over East Asia. The cause of these lingering El Nino effects during summer is investigated using observations and an atmospheric general circulation model (GCM). The results herein indicate that the TIO warming acts like a capacitor anchoring atmospheric anomalies over the Indo-western Pacific Oceans. It causes tropospheric temperature to increase by a moist-adiabatic adjustment in deep convection, emanating a baroclinic Kelvin wave into the Pacific. In the northwest Pacific, this equatorial Kelvin wave induces northeasterly surface wind anomalies, and the resultant divergence in the subtropics triggers suppressed convection and the anomalous anticyclone. The GCM results support this Kelvin wave-induced Ekman divergence mechanism. In response to a prescribed SST increase over the TIO, the model simulates the Kelvin wave with low pressure on the equator as well as suppressed convection and the anomalous anticyclone over the subtropical northwest Pacific. An additional experiment further indicates that the north Indian Ocean warming is most important for the Kelvin wave and northwest Pacific anticyclone, a result corroborated by observations. These results have important implications for the predictability of Indo-western Pacific summer climate: the spatial distribution and magnitude of the TIO warming, rather than simply whether there is an El Nino in the preceding winter, affect summer climate anomalies over the Indo-western Pacific and East Asia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available