4.7 Article

Evaluation of WRF and HadRM Mesoscale Climate Simulations over the US Pacific Northwest

Journal

JOURNAL OF CLIMATE
Volume 22, Issue 20, Pages 5511-5526

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2009JCLI2875.1

Keywords

-

Funding

  1. Environmental Protection Agency STAR
  2. National Science Foundation [ATM0709856]
  3. Microsoft Corporation
  4. Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA [NA17RJ1232]

Ask authors/readers for more resources

This work compares the Weather Research and Forecasting (WRF) and Hadley Centre Regional Model (HadRM) simulations with the observed daily maximum and minimum temperature (Tmax and Tmin) and precipitation at Historical Climatology Network (HCN) stations over the U. S. Pacific Northwest for 2003-07. The WRF and HadRM runs were driven by the NCEP/Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP)-II Reanalysis (R-2) data. The simulated Tmax in WRF and HadRM as well as in R-2 compares well with the observations. Predominantly cold biases of Tmax are noted in WRF and HadRM in spring and summer, while in winter and fall more stations show warm biases, especially in HadRM. Large cold biases of Tmax are noted in R-2 at all times. The simulated Tmin compares reasonably well with the observations, although not as well as Tmax in both models and in the reanalysis R-2. Warm biases of Tmin prevail in both model simulations, while R-2 shows mainly cold biases. The R-2 data play a role in the model biases of Tmax, although there are also clear indications of resolution dependency. The model biases of Tmin originate mainly from the regional models. The temporal correlation between the simulated and observed daily precipitation is relatively low in both models and in the reanalysis; however, the correlation increases steadily for longer averaging times. The high-resolution models perform better than R-2, although the nested WRF domains do have the largest biases in precipitation during the winter and spring seasons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available