4.7 Article

Parameterization of eddy fluxes near oceanic boundaries

Journal

JOURNAL OF CLIMATE
Volume 21, Issue 12, Pages 2770-2789

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2007JCLI1510.1

Keywords

-

Ask authors/readers for more resources

In the stably stratified interior of the ocean, mesoscale eddies transport materials by quasi-adiabatic isopycnal stirring. Resolving or parameterizing these effects is important for modeling the oceanic general circulation and climate. Near the bottom and near the surface, however, microscale boundary layer turbulence overcomes the adiabatic, isopycnal constraints for the mesoscale transport. In this paper a formalism is presented for representing this transition from adiabatic, isopycnally oriented mesoscale fluxes in the interior to the diabatic, along-boundary mesoscale fluxes near the boundaries. A simple parameterization form is proposed that illustrates its consequences in an idealized flow. The transition is not confined to the turbulent boundary layers, but extends into the partially diabatic transition layers on their interiorward edge. A transition layer occurs because of the mesoscale variability in the boundary layer and the associated mesoscale-microscale dynamical coupling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available