4.7 Article

Effects of convective momentum transport on the atmospheric circulation in the community atmosphere model, version 3

Journal

JOURNAL OF CLIMATE
Volume 21, Issue 7, Pages 1487-1499

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2007JCLI1789.1

Keywords

-

Ask authors/readers for more resources

Transport of momentum by convection is an important process affecting global circulation. Owing to the lack of global observations, the quantification of the impact of this process on the tropospheric climate is difficult. Here an implementation of two convective momentum transport parameterizations, presented by Schneider and Lindzen and Gregory et al., in the Community Atmosphere Model, version 3 (CAM3) is presented, and their effect on global climate is examined in detail. An analysis of the tropospheric zonal momentum budget reveals that convective momentum transport affects tropospheric climate mainly through changes to the Coriolis torque. These changes result in improvement of the representation of the Hadley circulation: in December-February, the upward branch of the circulation is weakened in the Northern Hemisphere and strengthened in the Southern Hemisphere, and the lower northerly branch is weakened. In June-August, similar improvements are noted: The inclusion of convective momentum transport in CAM3 reduces many of the model's biases in the representation of surface winds, as well as in the representation of tropical convection. In an annual mean, the tropical easterly bias, subtropical westerly bias, and the bias in the 60 degrees S jet are improved. Representation of convection is improved along the equatorial belt with decreased precipitation in the Indian Ocean and increased precipitation in the western Pacific. The improvements of the representation of tropospheric climate are greater with the implementation of the Schneider and Lindzen parameterization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available