4.7 Article

MEA-based CO2 capture integrated with natural gas combined cycle or pulverized coal power plants: Operability and controllability through integrated design and control

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 207, Issue -, Pages 271-283

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2018.09.115

Keywords

Post-combustion solvent-based carbon capture; Integrated process design and control (IPDC); Operability and controllability

Ask authors/readers for more resources

Post-combustion solvent-based carbon capture is a promising technology that potentially can offset the greenhouse gas emissions from fossil-driven power generation systems. The challenge is that CO2 absorption (similar to other CCS technologies) imposes energetic penalties, and constrains the operational flexibility. In this paper, we build upon our recent contributions in the field (Sharifzadeh et al., 2016; Sharifzadeh and Shah, 2016), and study the dynamic response of such process to the electricity load changes in the power plant. The key research question is to investigate if the steady-state integrated process design and control framework applied in the previous studies, can also ensure controllability under a wide range of disturbances. The present study considers the mutual interactions between the power plant and capture process. Other features of interest include the implications of key design and operational decisions such as reboiler temperature, solvent circulation flow rate, solvent concentration and the rate of power load change or CO2 setpoint tracking for flexible process operation. The results suggest that the capture process exhibits a high degree of flexibility and the integrated design and control framework could be the key enabler for the commercialization of post-combustion solvent-based carbon capture. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available