4.5 Article

HIPPOCAMPAL FUNCTION IS COMPROMISED IN AN ANIMAL MODEL OF MULTIPLE SCLEROSIS

Journal

NEUROSCIENCE
Volume 309, Issue -, Pages 100-112

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2015.03.008

Keywords

LTP; LTD; EAE; object recognition; spatial memory; inflammation

Categories

Funding

  1. German Research Foundation (Deutsche Forsch ungsgemeinschaft) [GRK736]

Ask authors/readers for more resources

Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease that is characterized by demyelination and axonal damage in the nervous system. One obvious consequence is a cumulative loss of muscle control. However, cognitive dysfunction affects roughly half of MS sufferers, sometimes already early in the disease course. Although long-term (remote) memory is typically unaffected, the ability to form new declarative memories becomes compromised. A major structure for the encoding of new declarative memories is the hippocampus. Encoding is believed to be mediated by synaptic plasticity in the form of long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength. Here, in an animal model of MS we explored whether disease symptoms are accompanied by a loss of functional neuronal integrity, synaptic plasticity, or hippocampus-dependent learning ability. In mice that developed MOG(35-55)-induced experimental autoimmune encephalomyelitis (EAE), passive properties of CA1 pyramidal neurons were unaffected, although the ability to fire action potentials became reduced in the late phase of EAE. LTP remained normal in the early phase of MOG(35-55)induced EAE. However, in the late phase, LTP was impaired and LTP-related spatial memory was impaired. In contrast, LTD and hippocampus-dependent object recognition memory were unaffected. These data suggest that in an animal model of MS hippocampal function becomes compromised as the disease progresses. (C) 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available