4.7 Article

Turning hazardous waste into value-added products: production and characterization of struvite from ammoniacal waste with new approaches

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 43, Issue -, Pages 59-70

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2013.01.001

Keywords

Environmental protection; Hazardous waste; Struvite; Response surface optimisation; Green process

Funding

  1. Department of Science and Technology, Government of India under DST-FIST Program

Ask authors/readers for more resources

Ammonium nitrogen present in high concentration in ammoniacal waste was recovered through chemical precipitation as magnesium ammonium phosphate hexahydrate known as struvite with new approaches. For the first time, in such investigations, a central composite design of response surface methodology was adopted to optimise the process parameters in terms of pH, concentration of ammonium nitrogen, phosphate and magnesium salts during precipitation and recovery of struvite. A new membrane-integrated continuous approach ensured very efficient downstream separation and recovery (95%) of struvite and simultaneous purification of water for reuse. This ensured protection of surface water from chemical contamination by a hazardous waste stream. Exhaustive characterisation of the product struvite was done from different angles using scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, thermo-gravimetric analysis and electron diffraction spectroscopy. Findings indicate that with appropriate approaches, hazardous ammoniacal waste under response surface optimised conditions can be efficiently converted simultaneously into a pure, value-added struvite by-product and reusable water. Investigations culminated in an environmentally benign process towards tackling an environmental problem of the industries that generate ammoniacal waste. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available