4.6 Article

SELECTION OF WIRELESS TECHNOLOGY FOR TRACKING CONSTRUCTION MATERIALS USING A FUZZY DECISION MODEL

Journal

JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT
Volume 18, Issue 1, Pages 43-59

Publisher

VILNIUS GEDIMINAS TECH UNIV
DOI: 10.3846/13923730.2011.652157

Keywords

wireless sensor network; construction material tracking; decision model; fuzzy

Funding

  1. Yeungnam University

Ask authors/readers for more resources

As the size and scale of construction projects increase, inefficiencies related to the manual operations about field data in current tracking systems are becoming an important issue. While emerging wireless technologies are providing a feasible vision of ubiquitous computing and sensor networks applicable to the large-scale construction industry, it has become even harder to select a suitable technology for tracking construction materials because of the differing functionalities, capabilities, and scope of application of the specific technology. This research proposes a multi-criteria decision-making model that leverages the decision process in choosing various wireless technologies available on the market. To justify the selection of a specific technology, a fuzzy method was adopted to provide an appropriate way to decide among five alternatives (e.g., RFID, GPS, Wi-Fi, Zigbee, and UWB). Fuzzy ranking was obtained from the aggregated fuzzy appropriate index (FAT) based on a person's point of view (optimist, pessimist, or neutral). The results showed that Wi-Fi might be a suitable solution for optimists and neutral persons, but UWB might be the better alternative for pessimists. The results of this research may assist construction engineers in applying reasonable decision-making procedures in a fuzzy environment such as construction sites, and rank the relative importance of the various criteria and alternatives specified in this research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available