4.5 Review

Analysis of eicosanoids by LC-MS/MS and GC-MS/MS: A historical retrospect and a discussion

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jchromb.2014.03.017

Keywords

Artefactual formation; Blood; Plasma; Tandem mass spectrometry; Urine; Validation

Ask authors/readers for more resources

Eicosanoids are a large family that derives from arachidonic acid, i.e., eicosatetraenoic acid. Prominent members include prostaglandins, thromboxane and leukotrienes. They are biologically highly active lipid mediators and play multiple physiological roles. GC-MS/MS has played a pivotal role in the identification and quantification of eicosanoids in biological samples. This technology generated a solid knowledge of their analytical chemistry, biochemistry, physiology and pharmacology. Since about a decade, GC-MS and GC-MS/MS are increasingly displaced by the seemingly more simple, rapid and powerful LC-MS/MS in the area of instrumental analysis of physiological substances, drugs and their metabolites. In this article, we review and discuss LC-MS/MS methods published over the last decade from the perspective of the GC-MS/MS user. Our analysis revealed that the shift from the adult GC-MS/MS to the youthful emerging LC-MS/MS technology in eicosanoid analysis is associated with several important challenges. Known pitfalls and problematic issues discovered by eicosanoid pioneers by using GC-MS/MS are often ignored by LC-MS/MS users. Established reference values and intervals provided by GC-MS-based methods are not considered properly in developing and validating LC-MS/MS methods. Virtually, there is a belief in the unlimited capability of the LC-MS/MS technique in eicosanoid analysis, a thought that simulates analytical certainty. LC-MS/MS users should profit from the plethora of solid knowledge acquired from the use of GC-MS/MS in eicosanoid analysis in basic and clinical research. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available