4.5 Article

Major pitfalls in the measurement of artemisinin derivatives in plasma in clinical studies

Publisher

ELSEVIER
DOI: 10.1016/j.jchromb.2008.10.021

Keywords

Antimalarial; Artesunate; Degradation; Dihydroartemisinin; Liquid chromatography/tandem mass spectrometry (LC/MS/MS); Pitfalls; Protein precipitation; Stable isotope labeled (SIL) internal standard; Solid phase extraction

Funding

  1. US National Institute of Allergy and Infectious Diseases [NIH N01-AO-00042]
  2. Wellcome Trust of Great Britain [077166/Z/05/Z]

Ask authors/readers for more resources

A bioanalytical method for the analysis of artesunate (ARS) and its metabolite dihydroartemisinin (DHA) in human plasma using protein precipitation and liquid chromatography coupled to positive tandem mass spectroscopy was developed. The method was validated according to published US FDA-guidelines and showed excellent performance. However, when it was applied to clinical pharmacokinetic studies in malaria, variable degradation of the artemisinins introduced an unacceptable large source of error, rendering the assay useless. Haemolytic products related to sample collection and malaria infection degraded the compounds. Addition of organic solvents during sample processing and even low volume addition of the internal standard in an organic solvent caused degradation. A solid phase extraction method avoiding organic solvents eliminated problems arising from haemolysis induced degradation. Plasma esterases mediated only approximately 20% of ex vivo hydrolysis of ARS into DHA. There are multiple sources of major preventable error in measuring ARS and DHA in plasma samples from clinical trials. These various pitfalls have undoubtedly contributed to the large inter-subject variation in plasma concentration profiles and derived pharmacokinetic parameters for these important antimalarial drugs. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available