4.6 Article

Benchtop isolation and characterization of functional exosomes by sequential filtration

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1371, Issue -, Pages 125-135

Publisher

ELSEVIER
DOI: 10.1016/j.chroma.2014.10.026

Keywords

Exosomes; Exosome isolation; Sequential filtration; Depletion; Early detection; Cancer diagnostics

Funding

  1. Alliance of Cardiovascular Researchers
  2. MD Anderson Cancer Center High Resolution Electron Microscopy Facility [NIH CCSG P30CA016672]
  3. NSF [MCB-1244568]
  4. NASA [NNX13AH25G]

Ask authors/readers for more resources

Early and minimally invasive detection of malignant events or other pathologies is of utmost importance in the pursuit of improved patient care and outcomes. Recent evidence indicates that exosomes and extracellular vesicles in serum and body fluids can contain nucleic acid, protein, and other biomarkers. Accordingly, there is great interest in applying these clinically as prognostic, predictive, pharmacodynamic, and early detection indicators. Nevertheless, existing exosome isolation methods can be time-consuming, require specialized equipment, and/or present other inefficiencies regarding purity, reproducibility and assay cost. We have developed a straightforward, three-step protocol for exosome isolation of cell culture supernatants or large volumes of biofluid based on sequential steps of dead-end pre-filtration, tangential flow filtration (TFF), and low-pressure track-etched membrane filtration that we introduce here. Our approach yields exosome preparations of high purity and defined size distribution and facilitates depletion of free protein and other low-molecular-weight species, extracellular vesicles larger than 100 nm, and cell debris. Samples of exosomes prepared using the approach were verified morphologically by nanoparticle tracking analysis and electron microscopy, and mass spectrometry analyses confirmed the presence of previously reported exosome-associated proteins. In addition to being easy-to-implement, sequential filtration yields exosomes of high purity and, importantly, functional integrity as a result of the relatively low-magnitude manipulation forces employed during isolation. This answers an unmet need for preparation of minimally manipulated exosomes for investigations into exosome function and basic biology. Further, the strategy is amenable to translation for clinical exosome isolations because of its speed, automatability, scalability, and specificity for isolating exosomes from complex biological samples. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available