4.6 Article Proceedings Paper

D-optimal experimental design coupled with parallel factor analysis 2 decomposition a useful tool in the determination of triazines in oranges by programmed temperature vaporization-gas chromatography-mass spectrometry when using dispersive-solid phase extraction

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1288, Issue -, Pages 111-126

Publisher

ELSEVIER
DOI: 10.1016/j.chroma.2013.02.088

Keywords

PARAFAC2; Experimental design; QuEChERS; PTV-GC/MS; Triazines in oranges; SANCO/12495/2011

Ask authors/readers for more resources

The determination of triazines in oranges using a GC-MS system coupled to a programmed temperature vaporizer (PTV) inlet in the context of legislation is performed. Both pretreatment (using a Quick Easy Cheap Effective Rugged and Safe (QuEChERS) procedure) and injection steps are optimized using D-optimal experimental designs for reducing the experimental effort. The relative dirty extracts obtained and the elution time shifts make it necessary to use a PARAFAC2 decomposition to solve these two usual problems in the chromatographic determinations. The second-order advantage of the PARAFAC2 decomposition allows unequivocal identification according to document SANCO/12495/2011 (taking into account the tolerances for relative retention time and the relative abundance for the diagnostic ions), avoiding false negatives even in the presence of unknown co-eluents. The detection limits (CC(x) found, from 0.51 to 1.05 mu g kg(-1), are far below the maximum residue levels (MRLs) established by the European Union for simazine, atrazine, terbuthylazine, ametryn, simetryn, prometryn and terbutryn in oranges. No MRL violations were found in the commercial oranges analyzed. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available