4.7 Article

CRF-Amplified Neuronal TLR4/MCP-1 Signaling Regulates Alcohol Self-Administration

Journal

NEUROPSYCHOPHARMACOLOGY
Volume 40, Issue 6, Pages 1549-1559

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/npp.2015.4

Keywords

-

Funding

  1. National Institute on Alcohol Abuse and Alcoholism [AA021261]
  2. National Institute of Arthritis and Musculoskeletal and Skin Diseases [AR053512]

Ask authors/readers for more resources

Alcohol dependence is a complex disorder that initiates with episodes of excessive alcohol drinking known as binge drinking. It has a 50-60% risk contribution from inherited susceptibility genes; however, their exact identity and function are still poorly understood. We report that alcohol-preferring P rats have innately elevated levels of Toll-like receptor 4 (TLR4) and monocyte chemotactic protein-1 (MCP-1) that colocalize in neurons from the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA). To examine the potential role of a TLR4/MCP-1 signal, we used Herpes Simplex Virus (HSV) vectors (amplicons) that retain in vivo neurotropism. Infusion of amplicons for TLR4 or MCP-1 siRNA into the CeA or VTA from the P rats inhibited target gene expression and blunted binge drinking. A similarly delivered amplicon for scrambled siRNA did not inhibit TLR4 or MCP-1 expression nor reduce binge drinking, identifying a neuronal TLR4/MCP-1 signal that regulates the initiation of voluntary alcohol self-administration. The signal was sustained during alcohol drinking by increased expression of corticotropin-releasing factor and its feedback regulation of TLR4 expression, likely contributing to the transition to alcohol dependence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available