4.6 Article

Low-voltage electromembrane extraction of basic drugs from biological samples

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1180, Issue 1-2, Pages 1-9

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2007.12.006

Keywords

sample preparation; supported liquid membranes; electromembrane extraction; basic drugs

Ask authors/readers for more resources

The present work has for the first time demonstrated electromembrane extraction (EME) at voltages obtainable by common batteries. Five basic drugs were extracted from acidified aqueous sample solutions, across a supported liquid membrane (SLM) consisting of 1-isopropyl-4-nitrobenzene impregnated in the walls of a hollow fiber, and into an acidified aqueous acceptor solution present inside the lumen of the hollow fiber with potential differences of 1-10 V applied over the SLM. Extractions from 1 ml standard solutions prepared in 10 mM HCl for 5 min and with a potential of 10 V demonstrated analyte recoveries of 50-93% in 25 mu l of 10 mM HCl as acceptor solution. This corresponds to enrichment factors of 20-37. Similar results were obtained with a common 9 V battery as power supply. Recoveries from low-voltage EME on human plasma, urine, and breast milk diluted with acetate buffer (pH 4) demonstrated recoveries in the range of 37-55% after 5 min of extraction. Excellent selectivity was demonstrated as no interfering peaks were detected. Standard curves in the range of 0.0625-0.625 mu g/ml demonstrated correlation coefficients of 0.994-0.999. Extraction recoveries from human plasma, urine or breast milk were not found to be sensitive towards individual variations. The results show that low-voltage EME has a future potential as a simple, selective, and time-efficient sample preparation technique of biological fluids. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available