4.6 Article

Ion-pair single-drop microextraction versus phase-transfer catalytic extraction for the gas chromatographic determination of phenols as tosylated derivatives

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1190, Issue 1-2, Pages 44-51

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2008.03.010

Keywords

Phenols; p-toluenesulfonyl chloride; phase-transfer catalysis; ion-pair; single-drop microextraction; preconcentration; derivatization

Ask authors/readers for more resources

The environmental fate of phenols represents a diachronic scientific consideration mainly due to their high toxicity and diverse physicochemical properties rendering them difficult to be analyzed as unity. Ion-pair-assisted extraction and microextraction techniques in association with a dedicated derivatization reaction are possible to lead to enhanced selectivity and sensitivity in gas chromatography. Phase-transfer catalytic liquid-liquid extraction-derivatization and ion-pair-assisted single-drop microextraction with in-drop derivatization are successfully employed for the analysis of 15 phenolic compounds. The analytes that react at room temperature with p-toluenesulfonyl chloride into the bulk of the organic phase are subsequently determined by GC-MS in selective-ion monitoring mode. Aiming at maximizing the derivatization yields obtained from the 15 analytes in a reasonable time period, the optimum experimental parameters were established along with the figures of merit of the methods. The limits of detection ranged from 0.48 to 1.5 ng/ml and from 0.20 to 0.28 ng/ml respectively, while the limits of quantitation ranged from 1.4 to 4.5 ng/ml and from 0.59 to 0.84 ng/ml for the two methods with the techniques under study. The overall procedure presented satisfactory analytical features with the liquid-liquid extraction protocol being easier to carry out while the single-drop one, presented higher sensitivity and significant reduction of the organic solvent employed. By comparison with other methods for the analysis of phenols, the proposed methods exhibit adequately low detection limits, good precision, short derivatization time and low solvent, sample and reagent consumption. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available