4.6 Article Proceedings Paper

Development and application of needle trap devices

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1196, Issue -, Pages 3-9

Publisher

ELSEVIER
DOI: 10.1016/j.chroma.2008.02.090

Keywords

needle trap device; active sampling; volatile organic compounds; BTEX; gas chromatography

Ask authors/readers for more resources

Needle trap devices (NTDs), like solid-phase microextraction (SPME) fibers, represent a new approach to one-step, solvent-free sample preparation and injection. New NTDs, packed with divinylbenzene (DVB) or Carboxen 1000 particles, are prepared, characterized, and used for benzene, toluene, ethylbenzne, and xylene (BTEX) sampling in our laboratory. This paper describes optimization parameters, performance evaluation, and application of NTDs for the analysis of a BTEX mixture from air. For active sampling, a sampling flow rate is an essential optimization parameter. Using a very small amount of sorbent particles (less than 1 mg DVB or Carboxen), 1.9 mL/min was the highest sampling flow rate that could be used with no breakthrough of any BTEX components. A single NTD was used to study breakthrough volumes (BTVs) and the breakthrough volume was proportional to the quantity of sorbent packed inside the needle. The Carboxen-packed NTD showed higher BTVs for all BTEX compared to the DVB-packed NTD. The performance of home-made NTDs was evaluated at different sampling flow rates, storage times, and for reusability. Finally, DVB packed NTDs were used to sample and analyze a BTEX mixture from permanent marker fumes, mosquito coil smoke, and at various points in the interior of a house. A very low concentration (10 pg/mL) of toluene was detected in the garage. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available