4.6 Review

Quantitative structure-retention (property) relationships in micellar electrokinetic chromatography

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1182, Issue 1, Pages 1-24

Publisher

ELSEVIER
DOI: 10.1016/j.chroma.2007.12.080

Keywords

micellar electrokinetic chromatography; retention mechanism; solvation parameter model; octanol-water partition coefficient; surfactants; vessicles; liposomes; microemulsion; correlation plots

Ask authors/readers for more resources

Quantitative structure-retention relationships (QSRRs) attempt to quantitatively understand the relationship between structure and retention and quantitative structure-property relationships (QSPRs) to explore the prediction of molecular properties from retention in chromatography. The application of these techniques to micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) using surfactants, vesicles and liposomes is reviewed. A database of system constants for the solvation parameter model is assembled and critically discussed with respect to the interpretation of solvation properties of micellar pseudophases and their use to identify correlation models for the estimation of physicochemical and environmental properties from retention in MEKC and MEEKC. The use of structure-generated descriptors to model retention in MEKC is discussed and compared with experimental-based techniques. It is shown that the possibilities of exploiting the collection of tools that underpin QSRRs and QSPRs studies are only just starting to be realized in MEKC and more work is needed to convert from these possibilities to the realization of reliable and robust models for compounds of diverse structure. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available