4.6 Article Proceedings Paper

Optimization of separation in two-dimensional high-performance liquid chromatography by adjusting phase system selectivity and using programmed elution techniques

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1189, Issue 1-2, Pages 207-220

Publisher

ELSEVIER
DOI: 10.1016/j.chroma.2007.11.053

Keywords

flavones; phenolic compounds; comprehensive two-dimensional liquid chromatography; gradient elution; fraction-transfer modulation

Ask authors/readers for more resources

The overall peak capacity in comprehensive two-dimensional liquid chromatographic (LC x LC) separation can be considerably increased using efficient columns and carefully optimized mobile phases providing large differences in the retention mechanisms and separation selectivity between the first and the second dimension. Gradient-elution operation and fraction-transfer modulation by matching the retention and the elution strength of the mobile phases in the two dimensions are useful means to suppress the band broadening in the second dimension and to increase the number of sample compounds separated in LC x LC. Matching parallel gradients in the first and second dimension eliminate the necessity of second-dimension column re-equilibration after the independent gradient runs for each fraction, increase the use of the available second-dimension separation time and can significantly improve the regularity of the coverage of the available retention space in LC x LC separations, especially with the first- and second-dimension systems showing partial selectivity correlations. Systematic development of an LC x LC method with parallel two-dimensional gradients was applied for separation of phenolic acids and flavone compounds. Several types of bonded C18, amide, phenyl, pentafluorophenyl and poly(ethylene glycol) columns were compared using the linear free energy relationship method to find suitable column combination with low correlation of retention of representative standards. The phase systems were optimized step-by-step to find the mobile phases and gradients providing best separation selectivity for phenolic compounds. The optimization of simultaneous parallel gradients in the first and second dimension resulted in significant improvement in the utilization of the available two-dimensional retention space. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available