4.7 Review

ASICs and mammalian mechanoreceptor function

Journal

NEUROPHARMACOLOGY
Volume 94, Issue -, Pages 80-86

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2014.12.007

Keywords

Mechanotransduction; ASICs; Ion channels; Mechanoreceptor; Nociceptor; Touch; Potassium channels

Funding

  1. ERC [294678]
  2. Deutsche Forschungsgemeinshaft [SFB665, DFB958]
  3. Deutsche akademsische Austausch Dienst (DAAD)
  4. International Association for the Study of Pain
  5. BBSRC
  6. David James studentship
  7. Biotechnology and Biological Sciences Research Council [1223845] Funding Source: researchfish
  8. European Research Council (ERC) [294678] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

It is well established that some members of the Deg/ENaC super family of amiloride sensitive ion channels can participate directly in the transduction of mechanical stimuli by sensory neurons in invertebrates. A large body of work has also implicated the acid sensing ion channels family (ASIC1-4) as participants in regulating mechanoreceptor sensitivity in vertebrates. In this review we provide an overview of the physiological and genetic evidence for involvement of ASICs in mechanosensory function. On balance, the available evidence favors the idea that these channels have an important regulatory role in mechanosensory function. It is striking how diverse the consequences of Asic gene deletion are on mechanosensory function with both gain and loss of function effects being observed depending on sensory neuron type. We conclude that other, as yet unknown, molecular partners of ASIC proteins may be decisive in determining their precise physiological role in mechanosensory neurons. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. (C) 2015 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available