4.7 Article

AARON: An Automated Reaction Optimizer for New Catalysts

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 14, Issue 10, Pages 5249-5261

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.8b00578

Keywords

-

Funding

  1. National Science Foundation [CHE-1665407]

Ask authors/readers for more resources

We describe an open-source computational toolkit (AARON: An Automated Reaction Optimizer for New catalysts) that automates the quantum mechanical geometry optimization and characterization of the transition state and intermediate structures required to predict the activities and selectivities of asymmetric catalytic reactions. Modern computational quantum chemistry has emerged as a powerful tool for explaining the selectivity and activity of asymmetric catalysts. However, reliably predicting the stereochemical outcome of realistic reactions often requires the geometry optimization of hundreds of transition state and intermediate structures, which is a tedious process. AARON automates these optimizations through an interface with a popular electronic structure package, accelerating quantum chemical workflows to enable the computational screening of potential catalysts. AARON is built using a collection of object-oriented Perl modules (AaronTools) that provide functionality to build and modify molecular and supramolecular structures. The main functionalities of AaronTools are also available as stand-alone command-line scripts. The core features of AaronTools and AARON are explained, and representative applications of AARON to both organocatalyzed and transition-metal-catalyzed reactions are presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available