4.7 Article

Solvent Effects on Excited-State Structures: A Quantum Monte Carlo and Density Functional Study

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 10, Issue 12, Pages 5528-5537

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ct500723s

Keywords

-

Funding

  1. ECHO grant of The Netherlands Organisation for Scientific Research (NWO) [712.012.005]
  2. COST Action CODECS
  3. MIUR under project PRIN

Ask authors/readers for more resources

We present the first application of quantum Monte Carlo (QMC) in its variational flavor combined with the polarizable continuum model (PCM) to perform excited-state geometry optimization in solution. Our implementation of the PCM model is based on a reaction field that includes both volume and surface polarization charges and is determined self-consistently with the molecular wave function during the QMC optimization of the solute geometry. For acrolein, acetone, methylenecyclopropene, and the propenoic acid anion, we compute the optimal exited-state geometries in water and compare our results with the structures obtained with second-order perturbation theory (CASPT2) and other correlated methods, and with time-dependent density functional theory (TDDFT). We find that QMC predicts a structural response to solvation in good agreement with CASPT2 with the only exception of the pi -> pi* state of acrolein where the robustness of the QMC geometry must be contrasted to the sensitivity of the perturbation result to the details of the calculation. As regards TDDFT, we show that all investigated functionals systematically overestimate the geometrical changes from the gas phase to solution, sometimes giving bond variations opposite in trend to QMC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available