4.7 Article

Assessment of Coupled Cluster Theory and more Approximate Methods for Hydrogen Bonded Systems

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 9, Issue 10, Pages 4403-4413

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ct400558w

Keywords

-

Ask authors/readers for more resources

To assess the accuracy of post-Hartree-Fock methods like CCSD(T), MP3, MP2.5, MP2, SCS-MP2, SOS-MP2, and DFT-SAPT, we evaluated several effects going beyond valence-correlated CCSD(T). For 16 small hydrogen bonded systems, CCSD(T) achieves an RMS error of 0.17 kJ/mol in the dissociation energy compared to our best estimate, which is a composite method akin to W4 theory. The error of CCSD(T) is thus much lower than for atomization energies. MP2 is surprisingly accurate for these systems with an RMS error of 1.3 kJ/mol. MP2.5 yields a clear improvement over MP2 (RMS of 0.5 kJ/mol) but still has an error about 3 times as large as CCSD(T) for the absolute RMS and almost 10 times as large for the relative RMS. error. Neither SCS-MP2, SOS-MP2, nor DFT-SAPT yield lower errors than MP2. With a Delta CCSD(T) correction to MP2, the basis set limit is readily achieved when employing diffuse functions-without these, the convergence is rather slow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available