4.7 Article

Revised AMBER Parameters for Bioorganic Phosphates

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 8, Issue 11, Pages 4405-4412

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ct300613v

Keywords

-

Funding

  1. NIH [GM57513]

Ask authors/readers for more resources

We report AMBER force field parameters for biological simulations involving phosphorylation of threonine, or tyrosine. The initial parameters used RESP fitting for the atomic partial charges and standard values for all other parameters such as Lennard-Jones coefficients. These were refined with the aid of a thermodynamic cycle consisting of experimentally determined pK(a) values, solvation energies from molecular dynamics free energy simulations, and gas phase basicities from QM calculations: A polarization energy term was included to account for the charge density change between the gas phase and solution, and solvation free energies were determined using thermodynamic integration. Parameter adjustment is required to obtain consistent thermodynamic results with better balanced electrostatic interactions between water and the phosphate oxygens. To achieve this; we modified the phosphate oxygen radii A thermodynamically consistent parameter set can be derived for monoanions and requires an increase of the van der Waals phosphate oxygen radii of approximately 0.09 angstrom. Larger, residue-specific radii appear to be needed for dianions. The revised parameters developed here should be of particular interest for environments where simulations of multiple protonation states may be of interest.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available