4.7 Article

Implicit Solvation Parameters Derived from Explicit Water Forces in Large-Scale Molecular Dynamics Simulations

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 8, Issue 7, Pages 2391-2403

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ct200390j

Keywords

-

Funding

  1. MRC National Institute for Medical Research [U117581331]

Ask authors/readers for more resources

Implicit solvation is a mean force approach to model solvent forces acting on a solute molecule. It is frequently used in molecular simulations to reduce the computational cost of solvent treatment. In the first instance, the free energy of solvation and the associated solvent-solute forces can be approximated by a function of the solvent-accessible surface area (SASA) of the solute and differentiated by an atom-specific salvation parameter sigma(SASA)(i). A procedure for the determination of values for the sigma(SASA)(i) parameters through matching of explicit and implicit solvation forces is proposed. Using the results of Molecular Dynamics simulations of 188 topologically diverse protein structures in water and in implicit solvent, values for the sigma(SASA)(i) parameters for atom types i of the standard amino acids in the GROMOS force field have been determined. A simplified representation based on groups of atom types sigma(SASA)(g) was obtained via partitioning of the atom-type sigma(SASA)(i) distributions by dynamic programming. Three groups of atom types with well separated parameter ranges were obtained, and their performance in implicit versus explicit simulations was assessed. The solvent forces are available at http://mathbio.nimr.mrc.ac.uk/wild/Solvent_Forces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available