4.7 Article

Magnetic Coupling in Transition-Metal Binuclear Complexes by Spin-Flip Time-Dependent Density Functional Theory

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 7, Issue 11, Pages 3523-3531

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ct200393s

Keywords

-

Funding

  1. Portuguese Foundation for Science and Technology [C2008-FCTUC UQFM v29]
  2. Spanish MICINN [FIS2008-02238]
  3. Generalitat de Catalunya [2009SGR1041]
  4. ICREA
  5. U.S. National Science Foundation [CHE09-56776]

Ask authors/readers for more resources

Spin-flip time-dependent density functional theory (SF-TDDFT) has been applied to predict magnetic coupling constants for a database of 12 spin-1/2 homobinuclear transition-metal complexes previously studied by Phillips and Peralta employing spin-projected broken-symmetry density functional theory (Phillips, J.J.; Peralta, J.E.J. Chem. Phys. 2011, 134, 034108). Several global hybrid density functionals with a range of percentages of Hartree-Fock exchange from 20% to 100% have been employed within the collinear-spin formalism, and we find that both the high-spin reference state and low-spin state produced by SF-TDDFT are generally well adapted to spin symmetry. The magnetic coupling constants are calculated from singlet triplet energy differences and compared to values arising from the popular broken-symmetry approach. On average, for the density functionals that provide the best comparison with experiment, the SF-TDDFT approach performs as well as or better than the spin-projected broken-symmetry strategy. The constrained density functional approach also performs quite well. The SF-TDDFT magnetic coupling constants show a much larger dependence on the percentage of Hartree-Fock exchange than on the other details of the exchange functionals or the nature of the correlation functionals. In general, SF-TDDFT calculations not only avoid the ambiguities associated with the broken-symmetry approach, but also show a considerably reduced systematic deviation with respect to experiment and a larger antiferromagnetic character. We recommend MPW1K as a well-validated hybrid density functional to calculate magnetic couplings with SF-TDDFT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available