4.7 Article

A System-Dependent Density-Based Dispersion Correction

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 6, Issue 7, Pages 1990-2001

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ct1001494

Keywords

-

Funding

  1. Sandoz Family Foundation
  2. Swiss NSF [200021_121577/1]
  3. EPFL

Ask authors/readers for more resources

Density functional approximations fail to provide a consistent description of weak molecular interactions arising from small electron density overlaps. A simple remedy to correct for the missing interactions is to add a posteriori an attractive energy term summed over all atom pairs in the system. The density-dependent energy correction, presented herein, is applicable to all elements of the periodic table and is easily combined with any electronic structure method, which lacks the accurate treatment of weak interactions. Dispersion coefficients are computed according to Becke and Johnson's exchange-hole dipole moment (XDM) formalism, thereby depending on the chemical environment of an atom (density, oxidation state). The long-range similar to R-6 potential is supplemented with higher-order correction terms (-R-8 and similar to R-10) through the universal damping function of Tang and Toennies. A genuine damping factor depending on (iterative) Hirshfeld (overlap) populations, atomic ionization energies, and two adjustable parameters specifically fitted to a given DFT functional is also introduced. The proposed correction, dDXDM, dramatically improves the performance of popular density functionals. The analysis of 30 (dispersion corrected) density functionals on 145 systems reveals that dDXDM largely reduces the errors of the parent functionals for both inter- and intramolecular interactions. With mean absolute deviations (MADs) of 0.74-0.84 kcal mol(-1), PBE-dDXDM, PBEO-dDXDM, and B3LYP-dDXDM outperform the computationally more demanding and most recent functionals such as M06-2X and B2PLYP-D (MAD of 1.93 and 1.06 kcal mol(-1), respectively).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available