4.7 Article

On the Validation of Molecular Dynamics Simulations of Saturated and cis-Monounsaturated Phosphatidylcholine Lipid Bilayers: A Comparison with Experiment

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 6, Issue 1, Pages 325-336

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ct900487a

Keywords

-

Funding

  1. Australian Research Council (ARC)

Ask authors/readers for more resources

Molecular dynamics simulations of fully hydrated pure bilayers of four widely studied phospholipids, 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyi-sn-glycero-3-phosphocholine (DOPC), and 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) using a recent revision of the GROMOS96 force field are reported. It is shown that the force field reproduces the structure and the hydration of bilayers formed by each of the four lipids with high accuracy. Specifically, the solvation and the orientation of the dipole of the phosphocholine headgroup and of the ester carbonyls show that the structure of the primary hydration shell in the simulations closely matches experimental findings. This work highlights the need to reproduce a broad range of properties beyond the area per lipid, which is poorly defined experimentally, and to consider the effect of system size and sampling times well beyond those commonly used.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available